Image-Based Three-Dimensional Analysis to Characterize the Texture of Porous Scaffolds

نویسندگان

  • Diana Massai
  • Francesco Pennella
  • Piergiorgio Gentile
  • Diego Gallo
  • Gianluca Ciardelli
  • Cristina Bignardi
  • Alberto Audenino
  • Umberto Morbiducci
چکیده

The aim of the present study is to characterize the microstructure of composite scaffolds for bone tissue regeneration containing different ratios of chitosan/gelatin blend and bioactive glasses. Starting from realistic 3D models of the scaffolds reconstructed from micro-CT images, the level of heterogeneity of scaffold architecture is evaluated performing a lacunarity analysis. The results demonstrate that the presence of the bioactive glass component affects not only macroscopic features such as porosity, but mainly scaffold microarchitecture giving rise to structural heterogeneity, which could have an impact on the local cell-scaffold interaction and scaffold performances. The adopted approach allows to investigate the scale-dependent pore distribution within the scaffold and the related structural heterogeneity features, providing a comprehensive characterization of the scaffold texture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased Osteogenic Potential of Pre-Osteoblasts on Three-Dimensional Printed Scaffolds Compared to Porous Scaffolds for Bone Regeneration

Background: One of the main challenges with conventional scaffold fabrication methods is the inability to control scaffold architecture. Recently, scaffolds with controlled shape and architecture have been fabricated using 3D-printing. Herein, we aimed to determine whether the much tighter control of microstructure of 3DP PLGA/β-TCP scaffolds is more effective in promoting osteogenesis than por...

متن کامل

A novel three-dimensional printing of electroconductive scaffolds for bone cancer therapy application

Objective(s): Tissue engineering aims to achieve a tissue, which has highly interconnected porous microstructure concurrent with appropriate mechanical and biological properties. Materials and Methods: Therefore, the microstructure scaffolds are of great importance in this field. In the present study, an electroconductive poly-lactic acid (EC-PLA) filament used to fabricate a porous bone ...

متن کامل

Fabrication of Gelatin Scaffolds Using Thermally Induced Phase Separation Technique

Gelatin is considered as a partially degraded product of collagen and it is a biodegradable polymer which can be used to produce scaffolds for tissue engineering. Three-dimensional, porous gelatin scaffolds were fabricated by thermally induced phase separation and freeze-drying method. Their porous structure and pore size were characterized by scanning electron microscopy. Scaffolds with differ...

متن کامل

A Review on Application of Three Dimensional Culture and Testicular Scaffolds to Induction of in-Vitro Spermatogenesis

Introduction: Induction of in vitro spermatogenesis can be useful for infertility treatment in azoospermic patients and those undergoing chemotherapy. Different culture systems have been used to achieve this goal. This review study was performed with the aim to evaluate the application of 3D culture and testicular scaffolds in the establishment of in vitro spermatogenesis. In this review study...

متن کامل

3D polylactide-based scaffolds for studying human hepatocarcinoma processes in vitro.

We evaluated the combination of leaching techniques and melt blending of polymers and particles for the preparation of highly interconnected three-dimensional polymeric porous scaffolds for in vitro studies of human hepatocarcinoma processes. More specifically, sodium chloride and poly(ethylene glycol) (PEG) were used as water-soluble porogens to form porous and solvent-free poly(L,D-lactide) (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014